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ABSTRACT: Reaction prediction remains one of the major
challenges for organic chemistry and is a prerequisite for
efficient synthetic planning. It is desirable to develop
algorithms that, like humans, “learn” from being exposed to
examples of the application of the rules of organic chemistry.
We explore the use of neural networks for predicting reaction
types, using a new reaction fingerprinting method. We
combine this predictor with SMARTS transformations to
build a system which, given a set of reagents and reactants,
predicts the likely products. We test this method on problems
from a popular organic chemistry textbook.

■ INTRODUCTION

To develop the intuition and understanding for predicting
reactions, a human must take many semesters of organic
chemistry and gather insight over several years of lab
experience. Over the past 40 years, various algorithms have
been developed to assist with synthetic design, reaction
prediction, and starting material selection.1,2 LHASA was the
first of these algorithms to aid in developing retrosynthetic
pathways.3 This algorithm required over a decade of effort to
encode the necessary subroutines to account for the various
subtleties of retrosynthesis such as functional group identi-
fication, polycyclic group handling, relative protecting group
reactivity, and functional group based transforms.4−7

In the late 1980s to the early 1990s, new algorithms for
synthetic design and reaction prediction were developed.
CAMEO,8 a reaction predicting code, used subroutines
specialized for each reaction type, expanding to include
reaction conditions in its analysis. EROS9 identified leading
structures for retrosynthesis by using bond polarity, electro-
negativity across the molecule, and the resonance effect to
identify the most reactive bond. SOPHIA10 was developed to
predict reaction outcomes with minimal user input; this
algorithm would guess the correct reaction type subroutine to
use by identifying important groups in the reactants; once the
reactant type was identified, product ratios would be estimated
for the resulting products. SOPHIA was followed by the KOSP
algorithm and uses the same database to predict retrosynthetic
targets.11 Other methods generated rules based on published
reactions and use these transformations when designing a
retrosynthetic pathway.12,13 Some methods encoded expert
rules in the form of electron flow diagrams.14,15 Another group
attempted to grasp the diversity of reactions by creating an
algorithm that automatically searches for reaction mechanisms
using atom mapping and substructure matching.16

While these algorithms have their subtle differences, all
require a set of expert rules to predict reaction outcomes.
Taking a more general approach, one group has encoded all of
the reactions of the Beilstein database, creating a “Network of
Organic Chemistry”.2,17 By searching this network, synthetic
pathways can be developed for any molecule similar enough to
a molecule already in its database of 7 million reactions,
identifying both one-pot reactions that do not require time-
consuming purification of intermediate products18 and full
multistep reactions that account for the cost of the materials,
labor, and safety of the reaction.2 Algorithms that use encoded
expert rules or databases of published reactions are able to
accurately predict chemistry for queries that match reactions in
its knowledge base. However, such algorithms do not have the
ability of a human organic chemist to predict the outcomes of
previously unseen reactions. In order to predict the results of
new reactions, the algorithm must have a way of connecting
information from reactions that it has been trained upon to
reactions that it has yet to encounter.
Another strategy of reaction prediction algorithm draws from

principles of physical chemistry and first predicts the energy
barrier of a reaction in order to predict its likelihood.19−24

Specific examples of reactions include the development of a
nanoreactor for early Earth reactions,20,21 heuristic aided
quantum chemistry,23 and ROBIA,25 an algorithm for reaction
prediction. While methods that are guided by quantum
calculations have the potential to explore a wider range of
reactions than the heuristic-based methods, these algorithms
would require new calculations for each additional reaction
family and will be prohibitively costly over a large set of new
reactions.
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A third strategy for reaction prediction algorithms uses
statistical machine learning. These methods can sometimes
generalize or extrapolate to new examples, as in the recent
examples of picture and handwriting identification,26,27 playing
video games,28 and most recently, playing Go.29 This last
example is particularly interesting as Go is a complex board
game with a search space of 10170, which is on the order of
chemical space for medium sized molecules.30 SYNCHEM was
one early effort in the application of machine learning methods
to chemical predictions, which relied mostly on clustering
similar reactions, and learning when reactions could be applied
based on the presence of key functional groups.13

Today, most machine learning approaches in reaction
prediction use molecular descriptors to characterize the
reactants in order to guess the outcome of the reaction. Such
descriptors range from physical descriptors such as molecular
weight, number of rings, or partial charge calculations to
molecular fingerprints, a vector of bits or floats that represent
the properties of the molecule. ReactionPredictor31,32 is an
algorithm that first identifies potential electron sources and
electron sinks in the reactant molecules based on atom and
bond descriptors. Once identified, these sources and sinks are
paired to generate possible reaction mechanisms. Finally, neural
networks are used to determine the most likely combinations in
order to predict the true mechanism. While this approach
allows for the prediction of many reactions at the mechanistic
level, many of the elementary organic chemistry reactions that
are the building blocks of organic synthesis have complicated
mechanisms, requiring several steps that would be costly for
this algorithm to predict.
Many algorithms that predict properties of organic molecules

use various types of fingerprints as the descriptor. Morgan

fingerprints and extended circular fingerprints33,34 have been
used to predict molecular properties such as HOMO−LUMO
gaps,35 protein−ligand binding affinity,36 and drug toxicity
levels37 and even to predict synthetic accessibility.38 Recently
Duvenavud et al. applied graph neural networks39 to generate
continuous molecular fingerprints directly from molecular
graphs. This approach generalizes fingerprinting methods
such as the ECFP by parametrizing the fingerprint generation
method. These parameters can then be optimized for each
prediction task, producing fingerprint features that are relevant
for the task. Other fingerprinting methods that have been
developed use the Coulomb matrix,40 radial distribution
functions,41 and atom pair descriptors.42 For classifying
reactions, one group developed a fingerprint to represent a
reaction by taking the difference between the sum of the
fingerprints of the products and the sum of the fingerprints of
the reactants.43 A variety of fingerprinting methods were tested
for the constituent fingerprints of the molecules.
In this work, we apply fingerprinting methods, including

neural molecular fingerprints, to predict organic chemistry
reactions. Our algorithm predicts the most likely reaction type
for a given set of reactants and reagents, using what it has
learned from training examples. These input molecules are
described by concatenating the fingerprints of the reactants and
the reagents; this concatenated fingerprint is then used as the
input for a neural network to classify the reaction type. With
information about the reaction type, we can make predictions
about the product molecules. One simple approach for
predicting product molecules from the reactant molecules,
which we use in this work, is to apply a SMARTS
transformation that describes the predicted reaction. Previously,
sets of SMARTS transformations have been applied to produce

Figure 1. An overview of our method for predicting reaction type and products. A reaction fingerprint, made from concatenating the fingerprints of
reactant and reagent molecules, is the input for a neural network that predicts the probability of 17 different reaction types, represented as a reaction
type probability vector. The algorithm then predicts a product by applying to the reactants a transformation that corresponds to the most probable
reaction type. In this work, we use a SMARTS transformation for the final step.
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large libraries of synthetically accessible compounds in the areas
of molecular discovery,44 metabolic networks,45 drug discov-
ery,46 and discovery of one-pot reactions.47 In our algorithm,
we use SMARTS transformation for targeted prediction of
product molecules from reactants. However, this method can
be replaced by any method that generates product molecule
graphs from reactant molecule graphs. An overview of our
method can be found in Figure 1 and is explained in further
detail in Prediction Methods.
We show the results of our prediction method on 16 basic

reactions of alkyl halides and alkenes, some of the first reactions
taught to organic chemistry students in many textbooks.48 The
training and validation reactions were generated by applying
simple SMARTS transformations to alkenes and alkyl halides.
While we limit our initial exploration to aliphatic, non-
stereospecific molecules, our method can easily be applied a
wider span of organic chemical space with enough example
reactions. The algorithm can also be expanded to include
experimental conditions such as reaction temperature and time.
With additional adjustments and a larger library of training data,
our algorithm will be able to predict multistep reactions and,
eventually, become a module in a larger machine-learning
system for suggesting retrosynthetic pathways for complex
molecules.

■ RESULTS AND DISCUSSION
Performance on Cross-Validation Set. We created a data

set of reactions of four alkyl halide reactions and 12 alkene
reactions; further details on the construction of the data set can
be found in Methods. Our training set consisted of 3400
reactions from this data set, and the test set consisted of 17,000
reactions; both the training set and the test set were balanced
across reaction types. During optimization on the training set,
k-fold cross-validation was used to help tune the parameters of
the neural net. Table 1 reports the cross-entropy score and the

accuracy of the baseline and fingerprinting methods on this test
set. Here the accuracy is defined by the percentage of matching
indices of maximum values in the predicted probability vector
and the target probability vector for each reaction.
Figure 2 shows the confusion matrices for the baseline,

neural, and Morgan fingerprinting methods, respectively. The
confusion matrices for the Morgan and neural fingerprints show
that the predicted reaction type and the true reaction type
correspond almost perfectly, with few mismatches. The only
exceptions are in the predictions for reaction types 3 and 4,
corresponding to nucleophilic substitution reaction with a
methyl shift and the elimination reaction with a methyl shift. As
described in Methods, these reactions are assumed to occur
together, so they are each assigned probabilities of 50% in the
training set. As a result, the algorithm cannot distinguish these
reaction types and the result on the confusion matrix is a 2 × 2
square. For the baseline method, the first reaction type, the

“NR” classification, is often overpredicted, with some additional
overgeneralization of some other reaction type as shown by the
horizontal bands.

Performance on Predicting Reaction Type of Exam
Questions. Kayala et al.31 had previously employed organic
textbook questions both as the training set and as the validation
set for their algorithm, reporting 95.7% accuracy on their
training set. We similarly decided to test our algorithm on a set
of textbook questions. We selected problems 8-47 and 8-48
from the Wade sixth edition organic chemistry textbook shown
in Figure 3.48 The reagents listed in each problem were
assigned as secondary reactants or reagents so that they
matched the training set. For all prediction methods, our
networks were first trained on the training set of generated
reactions, using the same hyperparameters found by the cross-
validation search. The similarity of the exam questions to the
training set was determined by measuring the Tanimoto49

distance of the fingerprints of the reactant and reagent
molecules in each reactant set. The average Tanimoto score
between the training set reactants and reagents and the exam
set reactants and reagents is 0.433, and the highest Tanimoto
score oberved between exam questions and training questions
was 1.00 on 8-48c and 0.941 on 8-47a. This indicates that 8-48c
was one of the training set examples. Table SI.1 show more
detailed results for this Tanimoto analysis.
For each problem, the algorithm determined the reaction

type in our set that best matched the answer. If the reaction in
the answer key did not match any of our reaction types, the
algorithm designated the reaction as a null reaction. The higher
the probability the algorithm assigned for each reaction type,
the more certainty the algorithm has in its prediction. These
probabilities are reported in Figure 4, color-coded with green
for higher probability and yellow/white for low probability.
In problem 8-47, the Morgan fingerprint algorithm had the

best performance with 12 of the 15 correct answers, followed
by the neural fingerprint algorithm and the baseline method,
both of which had 11 out of 15 correct answers. Both the
Morgan fingerprint algorithm and the neural fingerprint
algorithm predicted the correct answers with higher probability
than the baseline method. Several of the problems contained
rings, which were not included in the original training set. Many
of these reactions were predicted correctly by the Morgan and
neural fingerprint algorithms, but not by the baseline algorithm.
This suggests that both Morgan and neural fingerprint
algorithms were able to extrapolate the correct reactivity
patterns to reactants with rings.
In problem 8-48, students are asked to suggest mechanisms

for reactions given both the reactants and the products. To
match the input format of our algorithm, we did not provide
the algorithm any information about the products even though
it disadvantaged our algorithm. All methods had much greater
difficulty with this set of problems possibly because these
problems introduced aromatic rings, which the algorithm may
have had difficulty distinguishing from double bonds.

Performance on Product Prediction. Once a reaction
type has been assigned for a given problem by our algorithm,
we can use the information to help us predict our products. In
this study, we chose to naively use this information by applying
a SMARTS transformation that matched the predicted reaction
type to generate products from reactants. Figure 5 shows the
results of this product prediction method using Morgan
reaction fingerprints and neural reaction fingerprints on
problem 8-47 of the Wade textbook, analyzed in the previous

Table 1. Accuracy and Negative Log Likelihood (NLL) Error
of Fingerprint and Baseline Methods

fingerprint
method

fingerprint
length

train
NLL

train
accuracy
(%)

test
NLL

test
accuracy
(%)

baseline 51 0.2727 78.8 2.5573 24.7
Morgan 891 0.0971 86.0 0.1792 84.5
neural 181 0.0976 86.0 0.1340 85.7
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section. For all suggested reaction types, the SMARTS
transformation was applied to the reactants given by the
problem. If the SMARTS transformation for that reaction type

was unable to proceed due to a mismatch between the given
reactants and the template of the SMARTS transformation,

Figure 2. Cross validation results for (a) baseline fingerprint, (b) Morgan reaction fingerprint, and (c) neural reaction fingerprint. A confusion matrix
shows the average predicted probability for each reaction type. In these confusion matrices, the predicted reaction type is represented on the vertical
axis, and the correct reaction type is represented on the horizontal axis. These figures were generated on the basis of code from Schneider et al.43

Figure 3. Wade problems (a) 8-47 and (b) 8-48.48
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then the reactants were returned as the predicted product
instead.
A product prediction score was also assigned for each

prediction method. For each reaction, the Tanimoto score49

was calculated between the Morgan fingerprint of the true
product and the Morgan fingerprint of the predicted product
for each reaction type, following the same applicability rules
described above. The overall product prediction score is
defined as the average of these Tanimoto scores for each
reaction type, weighted by the probability of each reaction type
as given by the probability vector. The scores for each question
are given in Figure 5.
The Morgan fingerprint algorithm is able to predict 8 of the

15 products correctly, and the neural fingerprint algorithm is
able to predict 7 of the 15 products correctly. The average
Tanimoto score for the products predicted by the Morgan
fingerprint algorithm compared to the true products was 0.793,
and the average Tanimoto score between the true products and
the neural fingerprint algorithm products was 0.776. In general,

if the algorithm predicted the reaction type correctly with high

certainty, the product was also predicted correctly and the

weighted Tanimoto score was high, however, this was not the

case for all problems correctly predicted by the algorithm.
The main limitation in the algorithm’s ability to predict

products despite predicting the reaction type correctly is the

capability of the SMARTS transformation to accurately describe

the transformation of the reaction type for all input reactants.

While some special measures were taken in the code of these

reactions to handle some common regiochemistry consider-

ations, such as Markovnikov orientation, it was not enough to

account for all of the variations of transformations seen in the

sampled textbook questions. Future versions of this algorithm

will require an algorithm better than encoded SMARTS

transformations to generate the products from the reactant

molecules.

Figure 4. Prediction results for (a) Wade problem 8-47 and (b) Wade problem 8-48, as displayed by estimated probability of correct reaction type.
Darker (greener) colors represent a higher predicted probability. Note the large amount of correct predictions in 8-47.

Figure 5. Product predictions for Wade 8-47 questions, with Tanimoto score. The true product is the product as defined by the answer key. The
major predicted product shows the product of the reaction type with the highest probability according to the Morgan fingerprint algorithm’s result.
The Morgan weighted score and the neural weighted score are calculated by taking an average of the Tanimoto scores over all the predicted products
weighted by the probability of that reaction type which generated that product.
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■ CONCLUSION

Using our fingerprint-based neural network algorithm, we were
able to identify the correct reaction type for most reactions in
our scope of alkene and alkyl halide reactions, given only the
reactants and reagents as inputs. We achieved an accuracy of
85% of our test reactions and 80% of selected textbook
questions. With this prediction of the reaction type, the
algorithm was further able to guess the structure of the product
for a little more than half of the problems. The main limitation
in the prediction of the product structure was due to the
limitations of the SMARTS transformation to describe the
mechanism of the reaction type completely.
While previously developed machine learning algorithms are

also able to predict the products of these reactions with similar
or better accuracy,31 the structure of our algorithm allows for
greater flexibillity. Our algorithm is able to learn the
probabilities of a range of reaction types. To expand the
scope of our algorithm to new reaction types, we would not
need to encode new rules, nor would we need to account for
the varying number of steps in the mechanism of the reaction;
we would just need to add the additional reactions to the
training set. The simplicity of our reaction fingerprinting
algorithm allows for rapid expansion of our predictive
capabilities given a larger data set of well-curated reactions.2,12

Using data sets of experimentally published reactions, we can
also expand our algorithm to account for the reaction
conditions in its predictions and, later, predict the correct
reaction conditions.
This paper represents a step toward the goal of developing a

machine learning algorithm for automatic synthesis planning of
organic molecules. Once we have an algorithm that can predict
the reactions that are possible from its starting materials, we can
begin to use the algorithm to string these reactions together to
develop a multistep synthetic pathway. This pathway prediction
can be further optimized to account for reaction conditions,
cost of materials, fewest number of reaction steps, and other
factors to find the ideal synthetic pathway. Using neural
networks helps the algorithm to identify important features
from the reactant molecules’ structure in order to classify new
reaction types.

■ METHODS

Data Set Generation. The data set of reactions was
developed as follows: A library of all alkanes containing 10
carbon atoms or fewer was constructed. To each alkane, a
single functional group was added, either a double bond or a
halide (Br, I, Cl). Duplicates were removed from this set to
make the substrate library. Sixteen different reactions were
considered, 4 reactions for alkyl halides and 12 reactions for
alkenes. Reactions resulting in methyl shifts or resulting in
Markovnikov or anti-Markovnikov product were considered as
separate reaction types. Each reaction is associated with a list of
secondary reactants and reagents, as well as a SMARTS
transformation to generate the product structures from the
reactants.
To generate the reactions, every substrate in the library was

combined with every possible set of secondary reactants and
reagents. Those combinations that matched the reaction
conditions set by our expert rules were assigned a reaction
type. If none of the reaction conditions were met, the reaction
was designated a “null reaction” or NR for short. We generated
a target probability vector to reflect this reaction type

assignment with a one-hot encoding; that is, the index in the
probability vector that matches the assigned reaction type had a
probability of 1, and all other reaction types had a probability of
0. The notable exception to this rule was for the elimination
and substitution reactions involving methyl shifts for bulky alkyl
halides; these reactions were assumed to occur together, and so
50% was assigned to each index corresponding to these
reactions. Products were generated using the SMARTS
transformation associated with the reaction type with the two
reactants as inputs. Substrates that did not match the reaction
conditions were designated “null reactions” (NR), indicating
that the final result of the reaction is unknown. RDKit50 was
used to handle the requirements and the SMARTS trans-
formation. A total of 1,277,329 alkyl halide and alkene reactions
were generated. A target reaction probability vector was
generated for each reaction.

Prediction Methods. As outlined in Figure 1, to predict
the reaction outcomes of a given query, we first predict the
probability of each reaction type in our data set occurring, and
then we apply SMARTS transformations associated with each
reaction. The reaction probability vector, i.e., the vector
encoding the probability of all reactions, was predicted using
a neural network with reaction fingerprints as the inputs. This
reaction fingerprint was formed as a concatenation of the
molecular fingerprints of the substrate (Reactant1), the
secondary reactant (Reactant2), and the reagent. Both the
Morgan fingerprint method, in particular the extended-
connectivity circular fingerprint (ECFP), and the neural
fingerprint method were tested for generating the molecular
fingerprints. A Morgan circular fingerprint hashes the features
of a molecule for each atom at each layer into a bit vector. Each
layer considers atoms in the neighborhood of the starting atom
that are at less than the maximum distance assigned for that
layer. Information from previous layers is incorporated into
later layers, until the highest layer, e.g., the maximum bond
length radius, is reached.34 A neural fingerprint also records
atomic features at all neighborhood layers but, instead of using
a hash function to record features, uses a convolutional neural
network, thus creating a fingerprint with differentiable weights.
Further discussion about circular fingerprints and neural
fingerprints can be found in Duvenaud et al.39 The circular
fingerprints were generated with RDKit, and the neural
fingerprints were generated with code from Duvenaud et al.39

The neural network used for prediction had one hidden layer of
100 units. Hyperopt51 in conjunction with Scikit-learn52 was
used to optimize the learning rate, the initial scale, and the
fingerprint length for each of the molecules.
For some reaction types, certain reagents or secondary

reactants are required for that reaction. Thus, it is possible that
the algorithm may learn to simply associate these components
in the reaction with the corresponding reaction type. As a
baseline test to measure the impact of the secondary reactant
and the reagent on the prediction, we also performed the
prediction with a modified fingerprint. For the baseline metric,
the fingerprint representing the reaction was a one-hot vector
representation for the 20 most common secondary reactants
and the 30 most common reagents. That is, if one of the 20
most common secondary reactants or one of the 30 most
common reagents was found in the reaction, the corresponding
bits in the baseline fingerprint were turned on; if one of the
secondary reactants or reagents was not in these lists, then a bit
designated for “other” reactants or reagents was turned on. This
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combined one-hot representation of the secondary reactants
and the reagents formed our baseline fingerprint.
Once a reaction type has been predicted by the algorithm,

the SMARTS transformation associated with the reaction type
is applied to the reactants. If the input reactants meet the
requirements of the SMARTS transformation, the product
molecules generated by the transformation are the predicted
structures of the products. If the reactants do not match the
requirements of the SMARTS transformation, the algorithm
instead guesses the structures of the reactants instead, i.e., it is
assumed that no reaction occurs.
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